DOI: 10.35598/mcfpga.2025.021

65

Discrete Fourier Transform: Analysis, Algorithms,
Software and Hardware Implementation

Oleksandr Vorgul
Scientific adviser
ORCID 0000-0002-7659-8796
dept.Microprocessor Technologies and System
Kharkiv National University of Radio Electronics
Kharkiv, Ukraine
oleksandr.vorgul@nure.ua

Abstract— In this paper, a comprehensive analysis of
the discrete Fourier transform (DFT) and fast Fourier
transform (FFT) is performed with an emphasis on
computational complexity, implementation features, and
practical applications. Algorithms for directly
computing the DFT and optimized FFT with time
decimation are investigated. Comparative modeling is
performed in the Octave and Python environments,
including error analysis and optimization methods. A
hardware implementation on FPGA using VHDL is
presented, describing the structure of basic modules and
operations with complex numbers. Particular attention
is paid to the problem of processing signals with a length
that is not a power of two and alternative approaches
(Bluestein algorithm). The results demonstrate the
effectiveness of the FFT for real-time spectral analysis
tasks.

Keywords— Discrete Fourier Transform, FFT, Algorithm,
Computational Complexity, FPGA, Octave, VHDL, Spectral
Analysis.

I. INTRODUCTION

The Fourier transform algorithm is one of the most
important tools for signal analysis in digital data processing
[1]. This algorithm allows transforming time sequences into
frequency spectra, which allows identifying and analyzing
frequency components of signals. The Fourier transform is
used in a wide range of fields of science and technology,
including digital signal processing, image analysis,
telecommunications, and many others [1,2] .

This paper discusses the implementation of the Fourier
transform (FT) algorithm using the Octave and Python
programming languages , as well as its implementation on
programmable logic integrated circuits (FPGAs) using the
VHDL language. The topic of computational complexity
and the use of complex arithmetic for efficient execution of
the algorithm is also touched upon [3] .

The discrete Fourier transform (DFT) algorithm plays a
key role in digital signal processing and allows transforming
a sequence of time samples into the frequency domain. The
standard fast Fourier transform (FFT) algorithm is effective
if the number of signal samples N is a power of two.

Maksym Skorbatiuk
dept.Microprocessor Technologies and System
Kharkiv National University of Radio Electronics
Kharkiv, Ukraine

maksym.skorbatiuk@nure.ua

However, in practice, it is often necessary to calculate the
DFT for N points that are not a power of two. In such cases,
more The discrete Fourier transform (DFT) transforms a
sequence X [n] of N points into a spectral sequence X[k]
with the universal algorithms are used, for example, the
Bluestein algorithm.

II. THEORETICAL FOUNDATIONS OF DFT AND FFT
same number of elements, possibly complex ones. The
DFT [1,2] can be calculated using the formula

N-1
X[k]= X xln]- ™
n=0 (1)
where x [n] is the original sequence, X[k] is its
frequency representation, i.e. spectral components, W[n,k]
is the transform kernel. In theory, the kernel of the Fourier

transform is often effectively represented in complex form:

w, " = exp(—jzﬂ-n-k)
N 2)

If the computer allows, then (1) can be implemented in
complex form. But if not, then, using trigonometric form, a
real computer will allow (1) to be implemented as a set of
real and imaginary parts from (2) [1,2]:

wy, " = cos[zﬂw : k) —jsin(zﬁ ‘n- kj
N N 3)

Then, in the case of using (3), the set of complex spectral
coefficients will be represented by a pair of real numbers.
Their use will no longer require support for complex
calculations, but will require modification of the algorithms
formulated for complex quantities.

The direct approach to computing the DFT has a
computational complexity of order O(N2), which can be
quite expensive for large values of N.

The FFT algorithm proposed by Cooley and Tukey
(1965) reduces the complexity to O(N log N) by recursively
dividing the sequence into subsequences [3]. For bases 2
and 4 this requires a signal length of N =2 ¥ otherwise zero
padding or Bluestein's algorithm is used [1, 3].

VII International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs

MC&FPGA-2025

mailto:oleksandr.vorgul@nure.ua

III. DFT IMPLEMENTATION IN OCTAVE AND PYTHON

Octave and Python are convenient environments for
modeling Fourier transform algorithms due to the presence
of built-in libraries and support for operations with complex
numbers.

1) Implementation in Octave

Matlab and Octave provide very similar built-in and
standard library functions for performing DFT, such as fft
(fast Fourier transform). However, for the purposes of
modeling a direct implementation of DFT, one can write
one's own function using complex arithmetic:
dft (x)

function X =

N = length(x);
X = zeros(1, N);
for k = 1:N
for n = 1:N
X(k)=X(k)+x(n) *exp (-11i*2*pi* (n-1)*
(k-1) /N);
end
end
end

This code is quite functional and performs a direct
discrete Fourier transform for a given sequence x . Here,
each iteration of the loop computes a complex value for the
corresponding frequency component of X[k]. The code
does not use Octave's capabilities for efficient loop
computation and is provided for computational complexity
analysis.

For Octave , this code is far from optimal and looks
strange, since it is not formulated in matrix notation. If the
signal vector x from (1) is a row, then in matrix form (1)
looks like this:

Now (3) is obtained from (4) by multiplying the row x
by the columns W ~one by one and then summing. Now we
are ready to consider the algorithm and its optimization.

2) Preliminary calculation of tables of sines and cosines W n

Usually quantity N counts is permanent meaning ,
therefore calculation tables W n Maybe be done preliminary
. In the cycle itself these tables should not be calculate , but
only use . Table structure W n enough is specific because
column 0 and row 0 are represented units , Ist line or 1st
column is main , rest columns or rows can be obtained from
1 by permutation without computing Limitations
productivity can arise because of necessary speed , time of
changeover, cost and time memory access .

3) Errors in calculations

The problems with computational errors with the
approach used in Octave or Python, that is, using all
calculations at maximum bit depth, will be minor and for
practical purposes are theoretical.

From a theoretical point of view, since there are
multiplication and addition operations on floating or fixed
point numbers, there will be errors, but they will be
acceptable.

66

Calculating sines and cosines in a range of angles over
one revolution of a circle gives a non-uniform error, and the
errors of cosine and sine are different.

The peculiarity, as can be seen from (1) and clearly seen
from the code for Octave, is the operation of the “multiply
and accumulate” type, which will lead to the accumulation
of calculation errors.

There is an interesting idea [3] how to normalize errors
when calculating the table (2) or (3). It consists in the fact
that only the sine of the minimum angle is calculated using
the trigonometric formula. The cosine of the minimum angle
is determined using the obtained result, the rest of the table
is built using the reduction formulas. For the case of
calculations with a fixed point of 16 bits, this leads to
normalization and uniform distribution of the error over the
entire field of change of the argument of trigonometric
functions.

4) Python implementation

Python also has built - in tools for working with Fourier
transforms, such as the NumPy library . However, like
Octave , a direct implementation of the DFT can be done in
a simple way:
import numpy as np

def dft (x):
N = len (x)
X = np.zeros (N, dtype = complex)

for k in range(N) :
for n in range(N) :
X[k]+ =x[n]* np.exp
)

(=2*3* np.pi *k*n/N

return X

dft function does the same thing as its Octave
counterpart, but uses the NumPy library to handle arrays and
complex numbers. Python and Octave allow for efficient
computations with complex arithmetic, which is important
for Fourier transform algorithms.

All modifications of the direct algorithm in Octave are
also applicable to Python.

IV. IMPLEMENTATION OF DFT IN FPGA IN VHDL LANGUAGE

Implementation of DFT on programmable logic
integrated circuits (FPGA) requires taking into account the
architecture and features of the VHDL hardware description
language. The main difficulty of implementation on FPGA
is that all calculations, including operations with complex
numbers, must be performed at the hardware level.

1) Implementation structure

To perform DFT on FPGA, it is necessary to organize
the calculation of sums for each frequency coefficient X[k
]. In VHDL, this can be described using modules that
perform complex multiplications and additions.

2) VHDL code example

Below is an example of implementation of part of the
DFT algorithm in VHDL:

library ieee ;
use ieee.std logic 1164.all;

use ieee.numeric std.all ;

entity dft is

VII International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs

MC&FPGA-2025

port (

clk in std logic ;

reset in std logic ;

start in std logic ;

x real , x 1imag in signed (15 downto
0);

-- Real and Imag In Data

x valid in std logic ;
X real , X 1imag out signed (31 down
to 0);

-- Real an Imag Out Data
done out std logic

)

end dft ;

architecture behavioral of dft is
-- internal signals, registers and pipel

ines
begin
process(clk)
begin
if rising edge (clk) then
if reset = 'l' then
-— RESET and
elsif start = '1l' then

DPF calculations
end if;
end if;
end process;
end behavioral;

This implementation represents the structure of a process
that will perform the DFT calculation in hardware.
Implementing complex number operations requires creating
multiplication and addition units to handle complex
numbers.

A fairly effective development of the Fourier transform
calculation can be achieved by implementing it at a high
level (High Level Synthesis) in the C language with
subsequent implementation in VHDL of the code of the
implemented IP core.

And once again, in the standard library (not IP cores,
there are some) of mathematics for HLS there is a function

67

FFT. And also, as for Ocvave , it is possible to implement
by the enumeration method, which will not be optimal.

V. COMPLEXITY OF CALCULATION

As mentioned earlier, a simple implementation of DFT
has O(N 2) computational complexity. This means that for
each value of X[k], the sum of N complex products must
be calculated. Thus, the algorithm requires NXN complex
multiplications and NxN complex additions to complete,
which becomes problematic for large values of N. For real-
valued computations, this will result in more than a doubling
of the complexity, since different forms of the two complex
values will be required to perform the addition and
multiplication

VI. CONCLUSIONS

The discrete Fourier transform remains a key tool for
spectral analysis, despite the computational complexity of
the direct algorithm being O(N 2) [1]. The implementation
of the FFT reduces the complexity to O(N log N), allowing
efficient processing in Octave / Python and FPGA hardware
systems [5, 6]. Critical aspects are:

Optimizing memory access
coefficients

Accounting for errors when working with a fixed point

Bluestein's algorithm to signals of arbitrary length [3].

Research prospects include hybrid CPU-FPGA
architectures and adaptive algorithms for non-stationary
signals [5].

and precomputing

REFERENCES
Oppenheim AV, Schafer RW, Buck JR Discrete-Time Signal
Processing . — 3rd ed . — Pearson , 2009. — 1120 p .

Rabiner LR, Gold B. Theory and Application of Digital Signal
Processing . — Reprint . — Dover Publications , 2021. — 777 p .

(1]
[2]
[3] Blahut RE Fast Algorithms for Signal Processing . — Cambridge
University Press , 2010. —448 p .

Lutz M. Learning Python : Powerful Object-Oriented Programming
—5thed., Vol. 1.— O'Reilly Media, 2013. — 1542 p .

Kastner R., Matai J., Neuendorffer S. Parallel Programming for
FPGAs [Electronic resource]. — La Jolla , 2018. — URL:
https://kastner.ucsd.edu/wp-content/uploads/ 2018/03/admin/
pp4fpgas.pdf (accessed: 01.05.2025).

Octave.org: About GNU Octave [Electronic resource]. — URL:
https://www.octave.org (date of access: 01.05.2025).

(4]
[3]

(6]

VII International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development on

Microcontrollers and FPGAs

MC&FPGA-2025

https://www.octave.org/

