
 

 

VII International Scientific and Practical Conference 
Theoretical and Applied Aspects of Device Development on 

Microcontrollers and FPGAs MC&FPGA-2025 
 

65 

DOI: 10.35598/mcfpga.2025.021 
 

Discrete Fourier Transform: Analysis, Algorithms, 
Software аnd Hardware Implementation  

 

Oleksandr Vorgul 
 Scientific adviser 

ORCID 0000-0002-7659-8796 
dept.Microprocessor Technologies and System 

Kharkiv National University of Radio Electronics  
Kharkiv, Ukraine 

oleksandr.vorgul@nure.ua 
 

 Maksym Skorbatiuk  
dept.Microprocessor Technologies and System 

Kharkiv National University of Radio Electronics  
Kharkiv, Ukraine 

maksym.skorbatiuk@nure.ua 

 

 
Abstract— In this paper, a comprehensive analysis of 

the discrete Fourier transform (DFT) and fast Fourier 
transform (FFT) is performed with an emphasis on 
computational complexity, implementation features, and 
practical applications. Algorithms for directly 
computing the DFT and optimized FFT with time 
decimation are investigated. Comparative modeling is 
performed in the Octave and Python environments, 
including error analysis and optimization methods. A 
hardware implementation on FPGA using VHDL is 
presented, describing the structure of basic modules and 
operations with complex numbers. Particular attention 
is paid to the problem of processing signals with a length 
that is not a power of two and alternative approaches 
(Bluestein algorithm). The results demonstrate the 
effectiveness of the FFT for real-time spectral analysis 
tasks. 

 
Keywords— Discrete Fourier Transform, FFT, Algorithm, 

Computational Complexity, FPGA, Octave, VHDL, Spectral 
Analysis. 

I. INTRODUCTION  
The Fourier transform algorithm is one of the most 

important tools for signal analysis in digital data processing 
[1] . This algorithm allows transforming time sequences into 
frequency spectra, which allows identifying and analyzing 
frequency components of signals. The Fourier transform is 
used in a wide range of fields of science and technology, 
including digital signal processing, image analysis, 
telecommunications, and many others [1,2] . 

This paper discusses the implementation of the Fourier 
transform (FT) algorithm using the Octave and Python 
programming languages , as well as its implementation on 
programmable logic integrated circuits (FPGAs) using the 
VHDL language. The topic of computational complexity 
and the use of complex arithmetic for efficient execution of 
the algorithm is also touched upon [3] . 

The discrete Fourier transform (DFT) algorithm plays a 
key role in digital signal processing and allows transforming 
a sequence of time samples into the frequency domain. The 
standard fast Fourier transform (FFT) algorithm is effective 
if the number of signal samples N is a power of two. 

However, in practice, it is often necessary to calculate the 
DFT for N points that are not a power of two. In such cases, 
more The discrete Fourier transform (DFT) transforms a 
sequence x [ n ] of N points into a spectral sequence X[ k ] 
with the universal algorithms are used, for example, the 
Bluestein algorithm. 

II. THEORETICAL FOUNDATIONS OF DFT AND FFT 
same number of elements, possibly complex ones. The 

DFT [1,2] can be calculated using the formula 

  (1) 
where x [ n ] is the original sequence, X[ k ] is its 

frequency representation, i.e. spectral components, W[ n,k ] 
is the transform kernel. In theory, the kernel of the Fourier 
transform is often effectively represented in complex form: 

   (2) 
If the computer allows, then (1) can be implemented in 

complex form. But if not, then, using trigonometric form, a 
real computer will allow (1) to be implemented as a set of 
real and imaginary parts from (2) [1,2]: 

   (3) 
Then, in the case of using (3), the set of complex spectral 

coefficients will be represented by a pair of real numbers. 
Their use will no longer require support for complex 
calculations, but will require modification of the algorithms 
formulated for complex quantities. 

The direct approach to computing the DFT has a 
computational complexity of order O(N2), which can be 
quite expensive for large values of N. 

The FFT algorithm proposed by Cooley and Tukey 
(1965) reduces the complexity to O(N log N) by recursively 
dividing the sequence into subsequences [3]. For bases 2 
and 4 this requires a signal length of N = 2 k , otherwise zero 
padding or Bluestein's algorithm is used [1, 3]. 

 

[ ] [ ]∑
−

=

⋅−⋅=
!

"

!

"

#"
!$"%#&







 ⋅⋅−=⋅− !"

#
$% !"

#
π!"#$







 ⋅⋅−






 ⋅⋅=⋅− !"

#
$!"

#
% !"
#

ππ !"#$!%&"

mailto:oleksandr.vorgul@nure.ua


 

 

VII International Scientific and Practical Conference 
Theoretical and Applied Aspects of Device Development on 

Microcontrollers and FPGAs MC&FPGA-2025 
 

66 

III. DFT IMPLEMENTATION IN OCTAVE AND PYTHON 
Octave and Python are convenient environments for 

modeling Fourier transform algorithms due to the presence 
of built-in libraries and support for operations with complex 
numbers. 

1) Implementation in Octave 

Matlab and Octave provide very similar built-in and 
standard library functions for performing DFT, such as fft 
(fast Fourier transform). However, for the purposes of 
modeling a direct implementation of DFT, one can write 
one's own function using complex arithmetic: 

 
function X = dft (x) 
N = length(x); 
X = zeros( 1, N); 
  for k = 1:N 
    for n = 1:N 
     X( k)=X(k)+x(n)*exp(-1i*2*pi*(n-1)*
(k-1)/N); 
    end 
  end 
end 

 
This code is quite functional and performs a direct 

discrete Fourier transform for a given sequence x . Here, 
each iteration of the loop computes a complex value for the 
corresponding frequency component of X[ k ]. The code 
does not use Octave's capabilities for efficient loop 
computation and is provided for computational complexity 
analysis. 

For Octave , this code is far from optimal and looks 
strange, since it is not formulated in matrix notation. If the 
signal vector x from (1) is a row, then in matrix form (1) 
looks like this: 

   (4) 
Now (3) is obtained from (4) by multiplying the row x 

by the columns W N one by one and then summing. Now we 
are ready to consider the algorithm and its optimization. 

2) Preliminary calculation of tables of sines and cosines W N 

Usually quantity N counts is permanent meaning , 
therefore calculation tables W N Maybe be done preliminary 
. In the cycle itself these tables should not be calculate , but 
only use . Table structure W N enough is specific because 
column 0 and row 0 are represented units , 1st line or 1st 
column is main , rest columns or rows can be obtained from 
1 by permutation without computing . Limitations 
productivity can arise because of necessary speed , time of 
changeover, cost and time memory access . 
3) Errors in calculations 

The problems with computational errors with the 
approach used in Octave or Python, that is, using all 
calculations at maximum bit depth, will be minor and for 
practical purposes are theoretical. 

From a theoretical point of view, since there are 
multiplication and addition operations on floating or fixed 
point numbers, there will be errors, but they will be 
acceptable. 

Calculating sines and cosines in a range of angles over 
one revolution of a circle gives a non-uniform error, and the 
errors of cosine and sine are different. 

The peculiarity, as can be seen from (1) and clearly seen 
from the code for Octave, is the operation of the “multiply 
and accumulate” type, which will lead to the accumulation 
of calculation errors. 

There is an interesting idea [3] how to normalize errors 
when calculating the table (2) or (3). It consists in the fact 
that only the sine of the minimum angle is calculated using 
the trigonometric formula. The cosine of the minimum angle 
is determined using the obtained result, the rest of the table 
is built using the reduction formulas. For the case of 
calculations with a fixed point of 16 bits, this leads to 
normalization and uniform distribution of the error over the 
entire field of change of the argument of trigonometric 
functions. 
4) Python implementation 

Python also has built - in tools for working with Fourier 
transforms, such as the NumPy library . However, like 
Octave , a direct implementation of the DFT can be done in 
a simple way: 
import numpy as np 
 
def dft (x): 
N = len (x) 
X = np.zeros ( N, dtype = complex) 
  for k in range(N): 
   for n in range(N): 
X[k ]+ =x[n]* np.exp (-2*j* np.pi *k*n/N
) 
  return X 

dft function does the same thing as its Octave 
counterpart, but uses the NumPy library to handle arrays and 
complex numbers. Python and Octave allow for efficient 
computations with complex arithmetic, which is important 
for Fourier transform algorithms. 

All modifications of the direct algorithm in Octave are 
also applicable to Python. 

IV. IMPLEMENTATION OF DFT IN FPGA IN VHDL LANGUAGE 
Implementation of DFT on programmable logic 

integrated circuits (FPGA) requires taking into account the 
architecture and features of the VHDL hardware description 
language. The main difficulty of implementation on FPGA 
is that all calculations, including operations with complex 
numbers, must be performed at the hardware level. 
1) Implementation structure 
To perform DFT on FPGA, it is necessary to organize 

the calculation of sums for each frequency coefficient X[ k 
]. In VHDL, this can be described using modules that 
perform complex multiplications and additions. 
2) VHDL code example 
Below is an example of implementation of part of the 

DFT algorithm in VHDL: 
 

library ieee ; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all ; 
 
entity dft is 

!"#$ ⋅=



 

 

VII International Scientific and Practical Conference 
Theoretical and Applied Aspects of Device Development on 

Microcontrollers and FPGAs MC&FPGA-2025 
 

67 

 port ( 
  clk : in std_logic ; 
  reset : in std_logic ; 
  start : in std_logic ; 
  x_real , x_ imag : in signed(15 downto
 0); 
-- Real and Imag In Data 
   x_valid : in std_logic ; 
   X_real , X_ imag : out signed(31 down
to 0); 
-- Real an Imag Out Data 
   done : out std_logic 
); 
end dft ; 
 
 
architecture behavioral of dft is 
-- internal signals, registers and pipel
ines 
begin 
    process( clk ) 
    begin 
        if rising_edge ( clk ) then 
            if reset = '1' then 
-- RESET and 
            elsif start = '1' then 
-- DPF calculations 
            end if; 
        end if; 
    end process; 
end behavioral; 

 
This implementation represents the structure of a process 

that will perform the DFT calculation in hardware. 
Implementing complex number operations requires creating 
multiplication and addition units to handle complex 
numbers. 

A fairly effective development of the Fourier transform 
calculation can be achieved by implementing it at a high 
level (High Level Synthesis) in the C language with 
subsequent implementation in VHDL of the code of the 
implemented IP core. 

And once again, in the standard library (not IP cores, 
there are some) of mathematics for HLS there is a function 

FFT. And also, as for Ocvave , it is possible to implement 
by the enumeration method, which will not be optimal. 

V.   COMPLEXITY OF CALCULATION 
As mentioned earlier, a simple implementation of DFT 

has O(N 2 ) computational complexity. This means that for 
each value of X[ k ], the sum of N complex products must 
be calculated. Thus, the algorithm requires N×N complex 
multiplications and N×N complex additions to complete, 
which becomes problematic for large values of N. For real-
valued computations, this will result in more than a doubling 
of the complexity, since different forms of the two complex 
values will be required to perform the addition and 
multiplication 

VI.   CONCLUSIONS 
 

The discrete Fourier transform remains a key tool for 
spectral analysis, despite the computational complexity of 
the direct algorithm being O(N 2 ) [1]. The implementation 
of the FFT reduces the complexity to O(N log N), allowing 
efficient processing in Octave / Python and FPGA hardware 
systems [5, 6]. Critical aspects are: 

Optimizing memory access and precomputing 
coefficients 

Accounting for errors when working with a fixed point 
Bluestein's algorithm to signals of arbitrary length [3]. 
Research prospects include hybrid CPU-FPGA 

architectures and adaptive algorithms for non-stationary 
signals [5]. 

 

REFERENCES 
[1] Oppenheim AV, Schafer RW, Buck JR Discrete-Time Signal 

Processing . – 3rd ed . – Pearson , 2009. – 1120 p .  
[2] Rabiner LR, Gold B. Theory and Application of Digital Signal 

Processing . – Reprint . – Dover Publications , 2021. – 777 p . 
[3] Blahut RE Fast Algorithms for Signal Processing . – Cambridge 

University Press , 2010. – 448 p .  
[4] Lutz M. Learning Python : Powerful Object-Oriented Programming 

– 5th ed ., Vol . 1. – O'Reilly Media , 2013. – 1542 p .  
[5] Kastner R., Matai J., Neuendorffer S. Parallel Programming for 

FPGAs [Electronic resource]. – La Jolla , 2018. – URL: 
https://kastner.ucsd.edu/wp-content/uploads/ 2018/03/admin/ 
pp4fpgas.pdf (accessed: 01.05.2025).  

[6] Octave.org: About GNU Octave [Electronic resource]. – URL: 
https://www.octave.org (date of access: 01.05.2025). 

 

 

https://www.octave.org/

