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Abstract— The paper presents an approach to the
development of a control system for a quadruped robotic
platform using inverse kinematics. The solution enables
accurate movement of the robot's legs to achieve stable motion
and balancing under uncertain terrain conditions. The
kinematic model is calculated using FreeCAD tools and
implemented in a control code through the transformation of
joint angles into PWM signals for servo drives. A simulation
model in MATLAB Simulink was created to test the
stabilization algorithm. The obtained results demonstrate the
ability of the system to correct the robot's posture and maintain
balance in real time, even under significant external
disturbances.
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I. INTRODUCTION

Research in the field of robotics is one of the promising
areas in the development of mobile robots aimed at timely and
successful implementation of search operations in various
potentially dangerous and unfavorable conditions for people,
such as heterogeneous disasters, natural disasters, incidents of
local or individual scale, etc. [1].

Currently, the number of robots designed to search for
victims of natural and man-made disasters is growing sharply.
Basically, such are based on the need to overcome obstacles
for which rescuers, search animals and flying drones would be
less effective [2]. Very often, such robots are based on
methods of movement from both living creatures and
mechanisms already created in the past. It is also important to
note the growing popularity of collaborative robots that are
designed to ensure human safety in the working area of robots
[3]. Thus, in the context of the growing demand for
autonomous and stable mobile platforms, algorithms that
ensure precise positioning of robot limbs and adaptation to
environmental changes are of particular importance [4]. The
use of inverse kinematics allows not only to implement
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movement in a complex environment, but also to create the
prerequisites for the implementation of balancing algorithms
that contribute to increasing the efficiency of the mobile
platform.

II. PLATFORM ADJUSTMENT

To facilitate users in moving the end member of the robot
limbs to specific positions, geometric measurements and the
inverse kinematics method [5-8] are required. This method
uses input position coordinates in the form of X, Y, and Z.
The output of inverse kinematics is the angle formed at the
joint.

In Figure 1 (where the initial values measured by
FreeCAD tools for calculating inverse kinematics are listed
in Table 1), the quadruped robot has 3 joints on each leg. The
angle is formed by the joint, i.e. there is a pelvic angle (A o),
a thigh angle (A 1), and a lower leg angle (A 2).

In the control code itself, the values of these angles are
converted into PWM values to move the servo via the servo
driver.

The inverse kinematic functions, which will be used for
calculations, require the input of the X, Y, and Z coordinate
axes in the following form: the X axis represents the robot's
forward and backward movements, the Y axis represents the
robot's right and left movements, and the Z axis represents
the robot's up and down movements.
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Figure 1. Side view of the plane common to the hip and shin joints of
the robot leg, which regulate the platform inclinations

TABLE I. Initial values measured in FreeCAD

Specification Marking Value
Length of the first leg link Lo 91 mm
Length of the second leg link L 67.7 mm
Length of the third leg link L2 59.2 mm
_The first leg of a right triang_le_
b tomdeont | x| 09w
step in a vertical view
T_he second leg of a right triar_lg_le
s pmes omteion |y | i
step in a vertical view
Default second joint tilt Al 45°
Default third joint tilt A 25°

First, the values of the coordinates X Y and Z are placed.
To get all three angles at the joint, it uses an algebra and
geometry approach. The first calculation is to find the value
of the pelvis angle ( Ao):

¥
A0 = arctan(;) =75° (M

Next, the values of the resulting quantities X and Y are
found using the equation:

XY =+/X2 +v2 ()

The calculations use the displacement L o — the distance
from the pelvic joint to the femoral joint, i.e. the length of the
first leg link.

The following calculations contain the values of R and Z
that are necessary for the equations for finding the updated
values of the angles A 1 and A 2 in the balancing and
stabilizing corrections:

Z = L1%*sin(A1) + L2 *sin(A1 + A2) 3)
R=XY - 1L, “)

R can also be found by the equation:

R = L1%*cos(A1) + L2 * cos(A1 + A2) 5)

According to the simplifications of calculations from the
source [36], to implement adjustments, the hip and shin
angles are calculated using the following formulas:

_ Z I sin(4,) (6)
Al = arctan(R) — arctan 40, cos(A))
2.2 _12_52
2L4Ly

III. DEVELOPMENT OF A CONTROL SYSTEM FOR
BALANCING

To implement calculation formulas into the robot control
code, it is necessary to develop an application part for
applying the calculations.

Figure 2 shows a simplified representation of the
balancing system using a block system in MATLAB
SIMULINK.

The virtual block system includes:

—  sinusoidal-noise generator of extreme tilt values
from the gyroscope along the X and Z axes each,
approximately from (-55)° to 55°;

—  exponential filters to remove noise from signals
entering the assembly with target zero slope values for further
verification;

—  block of the algorithm for selecting stabilization
actions relative to current slopes;

—  blocks for selecting the initial values of the degrees
of the correction angles relative to the commands from the
stabilization algorithm;

—  PID controllers that are configured for the system
and provide the degree values of the correction angles to the
limiter values from (-60)° to 60°, which then provide the
correction values to the summation over the data stream of the
slopes being checked;

— displays of values of initial influence slopes,
correction slopes and result slopes.

Figure 3 shows the parameters of PID controllers. Figure
4 shows the algorithm of actions for each of the iterations of
calling the robot balancing subsystem. Figures 5-7 show the
results of the block system simulation in the form of graphs.
teams capable of self-organization, adaptation and effective
interaction with humans and other technical agents.
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Figure 2. Balancing block system

VII International Scientific and Practical Conference
Theoretical and Applied Aspects of Device Development o n

Microcontrollers and FPGAs

MC&FPGA-2025



Block Parameters: PID Controller2

This block implements continuous- and discrete-time PID control algorithms and includes advanced features such as anti-
windup, external reset, and signal tracking. You can tune the PID gains automatically using the "Tune...' button (requires

PID Controller
(Slmulmk Control Design).
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Figure 3. Results of PID controller tuning
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Figure 4. Developed balancing algorithm

The algorithm is designed to stabilize a platform using PID
control based on tilt data received from an MPU60 sensor

along the X and Y axes. It continuously reads the tilt data and

determines the direction of the tilt. Depending on the tilt

direction (left-backward, left-forward, right-backward,
right-forward), it activates PID regulation for t

corresponding leg of the platform. This helps to adjust the

or
he

platform angle and maintain balance. The process repeats in a

loop to provide real-time stabilization.
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Figure 5 — Graph of initial inclination values from the gyroscope
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Figure 6. Graph of correction slope values
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Figure 7. Graphs of correction slope values

IV. CONCLUSION

Despite the disadvantage of the block system in the
absence of an ideal simulation of realistic non-extreme
physical conditions of platform operation, taking into account
inertia and non-momentary deflections of the platform after
correction, it can be seen in Figure 7 that the system still
corrects the final slope values close to zero.

The results demonstrate the potential of using a
decentralized control architecture to ensure stable behavior of
a humanoid robot in real time. The integration of inverse
kinematics, fuzzy logic, and PID controllers allowed to
achieve a high level of adaptability even under limited
hardware resources. This confirms the feasibility of using the
presented approach in an educational environment and in
further scaling to more complex robotic platforms.

Thus, the use of inverse kinematics in combination with a
PID control system allows achieving high-precision control of
the movement of the limbs of a mobile platform, which
ensures the stability of its position under dynamic loads. The
model, developed in the MATLAB Simulink environment,
demonstrated the ability of the system to effectively
compensate for external influences by adjusting the tilt angles.
Further research involves improving the model taking into
account the inertial characteristics of the real environment and
implementing adaptive stabilization methods to expand the
functionality of autonomous robotic platforms.

In further research, it is planned to improve the simulation
taking into account the dynamics of the platform, implement
sensor integration with the vision system, and develop an
agent environment for group functioning of robots in the
context of Industry 5.0.
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