Syllabus Form of Academic Discipline Programming of Microprocessor Devices for a Smart Home

No	Field name	Detailed content, comments
1.	Name of the faculty	All the faculties
2.	The level of higher education	Bachelor's
3.	Code and title of specialty	All the specialties
4.	The type and title of the	Educational Program
	educational program	
5.	Code and title of the discipline	Programming of Microprocessor Devices for a Smart Home
6.	Number of ECTS credits	3
7.	The structure of the course	3 ECTS credits: 12 h. – 6 lecture, 8 h. – 4 practical lessons,
	(distribution by type and hours	16 h. – 4 laboratory works, 6 h. – 3 consultations, 48 h. –
	of training)	independent work, type of control: test.
8.	Schedule (terms) of study of the	3 Course, 6 semester of study (2 Course, 4 semester of study,
	subject	for a shortened form of study); 4 Course, 7 semester of study
		(3 Course, 5 semester of study, for a shortened form of
		study); 4 Course, 8 semester of study (3 Course, 6 semester
		of study, for a shortened form of study).
9.	Prerequisites for learning the	Disciplines that must be studied before: Fundamentals of
10	discipline	Programming, Algorithm and Data Structures
10.	Abstract (content) of the	Elective discipline of basic (professional) training, the
	discipline	following content modules:
		General characteristics of smart home devices and systems,
		Raspberry PI programming.
		Development of graphic and web applications.
11.	Competencies, knowledge,	- know the principles of operation of basic smart home
	skills, understanding that a	systems, characteristics of sensors, data transmission
	higher education acquirer has in	protocols, existing analogues, basics of Python language for
	the learning process	development of smart home management applications, basic
		libraries for executive device control, sensor polling,
		graphical interface implementation, smart home remote
		control methods via cloud servers and local web-server;
		- be able to control the on and off of lighting, as well as light
		intensity, implement space heating control systems with
		graphical and web-interface, implement smart home control
		through a cloud server using MQTT protocol and android
		application, process images from a video camera.
12.	Learning outcomes of a Higher	- to develop software for smart home subsystems: heating,
	Education applicant	lighting, security;
		- to implement remote access to the management of smart
		home systems using the Web interface or mobile
		applications;
		- program a single-board Raspberry PI PC.
13.	Assessment system in	To get a positive grade from PPMP, students must master
	accordance with each task for	two main sections of this course: general characteristics of
	taking tests/exams	devices and systems of the smart home, Raspberry PI
	-	programming, development of graphics and web
		programming, development of graphics and web

		applications. Students must complete and defend laboratory work and practical classes. The credit is assessed by a rating, which is defined as the number of points obtained by the student during the semester on a 100-point scale.
14.	The quality of the educational process	Adherence to the principles of academic integrity https://nure.ua/plagiat , https://nure.ua/branch/akademichna-dobrochesnist-ta-zabezpechennja-jakosti-osviti . Development of the working program of the discipline - 2020. The laboratory workshop is equipped with modern single-board PCs Raspberry PI 3, Raspberry PI 4 and uses modern software: Thonny, Bluefish.
15.	Methodological support	Complex of educational and methodical support of educational discipline "Development of microprocessor devices of a smart home" for students of all forms of education: 122 - "Computer Science" (ITSHI) / [Electronic resource] Edited by: O.V. Zubkov Electronic edition Kharkiv: KNURE, 2020 427 p.
16.	The developer of the Syllabus	Zubkov Oleh, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor, oleh.zubkov@nure.ua