Syllabus form of Academic Discipline Designing devices on microcontrollers and FPGAs. FPGA

№	Field name	Detailed content, comments
1.	Name of the faculty	All the faculties
2.	The level of higher	Bachelor's
	education	
3.	Code and title of specialty	All the specialties
4.	The type and title of the	Educational Program
	educational program	
5.	Title of the discipline	Designing devices on microcontrollers and FPGAs. FPGA
6.	Number of ECTS credits	4
7.	The structure of the	4 ECTS credits: 12 h. – 6 lecture, 36 h. – 9 laboratory works, 8 h.
	course (distribution by	- 4 consultations, 64 h. – independent work, type of control: exam.
	type and hours of	
	training)	
8.	Schedule (terms) of	3 Course, 6 semester of study
	study of the subject	(2 Course, 4 semester of study for a shortened form of study)
9.	Prerequisites for	Disciplines that must be studied before: Higher Mathematics,
	learning the discipline	Programming,
		Basics of Circuitry, Designing devices on microcontrollers and
		FPGAs. Modeling of digital signals by means of MATLAB and
		VHDL, Designing devices on microcontrollers and FPGAs. Microcontrollers
10.	Abstract (content) of the	Mandatory discipline of basic (professional) training, contains the
10.	discipline	following content modules:
	discipinie	Basics of VHDL language.
		Description of digital system in VHDL language.
		Description of devices in VHDL language.
		Programming of modern FPGA Artix 7 manufactured by Xilinx in
		VHDL language.
		Study of methods and means of debugging and simulation of
		projects using Xilinx Vivado CAD.
11.	Competencies,	- the ability to competently choose the elements of systems: sensors,
	knowledge, skills,	actuators, digital controllers and to create software;
	understanding that a	- be able to justify the choice of technical structure and to develop
	higher education	the application software for microprocessor control systems based
	acquirer has in the	on local automation tools, industrial controllers, programmable
	learning process	logic matrices and FPGA.
12.	Learning outcomes of a	- to solve at the hardware and software level the task of building
	Higher Education	specialized hardware;
	applicant	- create models of digital systems at different levels of description:
		abstract, schematic and software;
		- to master the methods of decomposition of the system, which are
		implemented in hardware and software;
		- implement a description of logic (program) of medium complexity
		in VHDL;
12	Accessment existen in	- to develop embedded microprocessor systems based on FPGA. To get a positive grade in the discipline PPMP.PLIS students
13.	Assessment system in accordance with each	
	accordance with each	must know the basics of programming systems for digital systems

	task for taking	in HDL, the basics of synthesis and analysis of logic circuits, FPGA
	tests/exams	circuitry Artix-7, be able to write programs of medium complexity
		in VHDL, know methods and tools for debugging Vivado CAD
		software.
		Students must complete and defend laboratory work.
		The credit is assessed by a rating, which is defined as the
		number of points obtained by the student during the semester on a
		100-point scale.
14.	The quality of the	Adherence to the principles of academic integrity
	educational process	http://lib.nure.ua/plagiat, https://nure.ua/branch/akademichna-
		dobrochesnist-ta-zabezpechennja-jakosti-osviti. The laboratory
		workshop is equipped with modern laboratory layouts Nexys 4
		DDR Artix-7 FPGA Trainer Board and uses modern software:
		MatLab, Vivado Design Suite from Xilinx.
15.	Methodological support	Complex of educational and methodical support of educational
		discipline «Designing devices on microcontrollers and FPGAs.
		Modeling of digital signals by means of MATLAB and VHDL.
		Microcontrollers. FPGA» for students of all forms of specialties:
		125 – «Cybersecurity» (STPI), 151 – «Automation and computer-
		integrated technologies», 152 – «Metrology and Information-
		Measuring Technique», 163 – «Biomedical Engineering», 171 –
		«Electronics», 172 – «Telecommunications and radio engineering»,
		173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, , O.
		Vorgul, O. Zubkov, I. Obod. – Kharkiv, 2020. – 120 p.
		https://catalogue.nure.ua/knmz/
16.	The developer of the	Svyd Iryna, Head of Department of MTS, Candidate of Technical
	Syllabus	Sciences, Associate Professor
		iryna.svyd@nure.ua
		Vorgul Oleksander, Assosiate Professor of the Department of MTS,
		Candidate of Technical Sciences, Associate Professor
		oleksandr.vorgul@nure.ua
		Zubkov Oleh, Assosiate Professor of the Department of MTS,
		Candidate of Technical Sciences, Associate Professor
		oleh.zubkov@nure.ua
		Obod Ivan, Professor the Department of Microprocessor
		Technologies and Systems, Doctor of Technical Sciences, Professor
		ivan.obod@nure.ua