Syllabus Form of Academic Discipline

No	Field name	Detailed content, comments
1.	Name of the faculty	Faculty of Electronic and Biomedical Engineering
2.	The level of higher education	Bachelor's
3.	Code and title of specialty	152 – Metrology and Information-Measuring Technique
4.	The type and title of the	Educational Program Engineering of Optoinformational and
	educational program	Laser Systems
5.	Code and title of the discipline	Designing devices on microcontrollers and FPGAs.
	1	Modeling of digital signals by means of MATLAB and
		VHDL
6.	Number of ECTS credits	2
7.	The structure of the course	2 ECTS credits: 6 h. – 3 lecture, 18 h. – 9 laboratory works,
	(distribution by type and hours	4 h. - 2 consultations, 32 h. - independent work, type of
	of training)	control: exam.
8.	Schedule (terms) of study of	2 Course, 4 semester of study (1Course, 2 semester of study,
	the subject	for a shortened form of study)
9.	Prerequisites for learning the	Disciplines that must be studied before: Higher Mathematics,
	discipline	Informatics, Fundamentals of Electrical Engineering and
10	A1	Electronics
10.	Abstract (content) of the	Mandatory discipline of basic (professional) training, contains
	discipline	the following content modules:
		Mathematical bases of digital processing
		Analysis of digital filters Synthesis of digital filters
11.	Competencies, knowledge,	- ability to use modern engineering and mathematical
11.	skills, understanding that a	packages to create models of instruments and measurement
	higher education acquirer has	systems;
	in the learning process	- ability to create software products in different programming
		languages or modern specialized software.
12.	Learning outcomes of a	- calculate the spectral, temporal and correlation
12.	Higher Education applicant	characteristics of discrete signals, find their Z - image;
	Ingher Education applicant	- determine the system function of digital filters (DF);
		- calculate the time and frequency characteristics of the CF;
		- to build structural schemes of CF in direct, canonical,
		cascade and parallel forms;
		- synthesize filters with infinite and finite pulse characteristics
		(HIX and CIX filters);
13.	•	To obtain a positive assessment with PPMP. Modeling of
	accordance with each task for	digital signals using Matlab and VHDL students must know
	taking tests/exams	the types and models of discrete signals, their time, spectral
		and correlation characteristics, methods of direct and inverse
		Z-conversion, the characteristics of digital filters; methods of
		analysis and synthesis of digital filters; examples of
		application of digital filters.
		Students must complete and defend laboratory work.
		The credit is assessed by a rating, which is defined as the
		number of points obtained by the student during the semester on a 100-point scale.
		on a 100-point scale.

14.	The quality of the educational process	Adherence to the principles of academic integrity (http://lib.nure.ua/plagiat). Update of the work program of the discipline - 2020. The laboratory workshop uses modern software MatLab.
15.	Methodological support	Complex of educational and methodical support of educational discipline «Designing devices on microcontrollers and FPGAs. Modeling of digital signals by means of MATLAB and VHDL. Microcontrollers. FPGA» for students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and computer-integrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv, 2020. – 380 p. http://catalogue.nure.ua/knmz. 2. Methodical instructions to laboratory works on discipline «Designing devices on microcontrollers and FPGAs. Modeling of digital signals by means of MATLAB and VHDL» for students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and computerintegrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O.
16.	The developer of the Syllabus	Zubkov. – Kharkiv,: NURE, 2019. – 75 c. – pdf 1,71 Mb. Svyd Iryna, Head of Department of MTS, Candidate of Technical Sciences, Associate Professor iryna.svyd@nure.ua Obod Ivan, Professor the Department of Microprocessor Technologies and Systems, Doctor of Technical Sciences, Professor ivan.obod@nure.ua Vorgul Oleksander, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleksandr.vorgul@nure.ua Zubkov Oleh, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleh.zubkov@nure.ua Saikivska Liliia, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleh.zubkov@nure.ua Saikivska Liliia, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleh.zubkov@nure.ua