Syllabus Form of Academic Discipline

No	Field name	Detailed content, comments
1.	Name of the faculty	Faculty of Information Radio Technologies and Technical Information
	č	Security
		Faculty of Automatics and Computerized Technologies
		Faculty of Infocommunications
		Faculty of Electronic and Biomedical Engineering
2.	The level of higher education	Bachelor's
3.	Code and title of specialty	172 – Telecommunications and Radio Engineering
4	The true and title of the	Educational December of Dadia Engineering
4.	The type and title of the educational program	Educational Program of Radio Engineering
5.	Code and title of the discipline	Designing devices on microcontrollers and FPGAs.
<i>J</i> .	code and title of the discipline	Microcontrollers
6.	Number of ECTS credits	4
7.	The structure of the course	4 ECTS credits: 12 h. – 6 lecture, 36 h. – 9 laboratory works, 8 h. – 4
	(distribution by type and hours	consultations, 64 h. – independent work, type of control: exam.
	of training)	7 71
8.	Schedule (terms) of study of	3 Course, 5 semester of study
	the subject	(2 Course, 3 semester of study for a shortened form of study)
9.	Prerequisites for learning the	Disciplines that must be studied before: Higher Mathematics,
	discipline	Programming,
		Basics of Circuitry, Designing devices on microcontrollers and FPGAs.
10	A1	Modeling of digital signals by means of MATLAB and VHDL
10.	Abstract (content) of the	Mandatory discipline of basic (professional) training, contains the
	discipline	following content modules:
		Modern STM32 microcontrollers and basics of C language. ARM programming of STM32 processors.
		Built-in and external peripheral programming.
11.	Competencies, knowledge,	- ability to perform computer modeling of devices, systems and
	skills, understanding that a	processes using universal application packages;
	higher education acquirer has	- ability to use systems of modeling and automation of circuit design for
	in the learning process	development of elements, nodes, parts and blocks of radio engineering
		and telecommunication systems;
		- ability to apply knowledge in the field of informatics and modern
		information technologies, computer and microprocessor technology and
		programming, software for solving specialized and practical problems in
		the field of professional activity.
12.	Learning outcomes of a	- develop schematics and write software for such devices as: keyboard
	Higher Education applicant	controller, PWM and analog signal generator, analog date meter
		digital signal filtering device, UART communication device, graphic
		display control device, etc .; - debug software using simulation packages STM32CubeMX and IAR
		Embedded Workbench for ARM;
		- program the microprocessor.
13	Assessment system in	To get a positive grade from PPMP. Microcontrollers, students must
	accordance with each task for	master three main sections of this course: modern STM32
	taking tests/exams	microcontrollers and the basics of the C language, ARM programming of
		STM32 processors, programming of embedded and external peripherals.
		Students must complete and defend laboratory work.
		The credit is assessed by a rating, which is defined as the number of
		points obtained by the student during the semester on a 100-point scale.

14.	The quality of the educational process	Adherence to the principles of academic integrity (http://lib.nure.ua/plagiat). Update of the work program of the discipline - 2020. The laboratory workshop is equipped with modern laboratory layouts STM32F4 DISCOVERY and uses modern software: MatLab, STM32CubeMX, IAR Embedded Workbench for ARM v 8.3 Kikxart X.
15.	Methodological support	Complex of educational and methodical support of educational discipline «Designing devices on microcontrollers and FPGAs. Modeling of digital signals by means of MATLAB and VHDL. Microcontrollers. FPGA» for students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and computer-integrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv, 2020. – 380 p. http://catalogue.nure.ua/knmz. 2. Methodical instructions to laboratory works on discipline «Designing devices on microcontrollers and FPGAs. Microcontrollers» for students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and computer-integrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv,: NURE, 2020. –
16.	The developer of the Syllabus	88 c. – pdf 2,4 Mb. Svyd Iryna, Head of Department of MTS, Candidate of Technical Sciences, Associate Professor iryna.svyd@nure.ua Obod Ivan, Professor the Department of Microprocessor Technologies and Systems, Doctor of Technical Sciences, Professor ivan.obod@nure.ua Vorgul Oleksander, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleksandr.vorgul@nure.ua Zubkov Oleh, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleh.zubkov@nure.ua Saikivska Liliia, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleh.zubkov@nure.ua

Note.

The Syllabus is a document explaining the mutual responsibility of the teacher and the student. It presents procedures (including deadlines and evaluation principles), policies (including academic integrity policies) and the content of the discipline, as well as a calendar for its implementation. The measured goals that the teacher sets before his discipline should be stated in the Syllabus. The student must understand what he/she will be able to learn, what this course may be useful for. The Syllabus outlines the conceptual transition from "knowledge acquisition" and "practical skills" to competencies that a student can learn while studying this course. The Syllabus includes the course summary, purpose (competences), list of themes, reading materials, rules for passing missed classes. Unlike the work program and the educational and methodological complex of the discipline, The Syllabus is created for the student.