N⁰	Field name	Detailed content, comments
1.	Name of the faculty	Faculty of Information Radio Technologies and Technical Information Security
		Faculty of Automatics and Computerized Technologies
		Faculty of Infocommunications
-		Faculty of Electronic and Biomedical Engineering
2.	The level of higher education	Bachelor's
3.	Code and title of specialty	172 – Telecommunications and Radio Engineering
4.	The type and title of the educational program	Educational Program of Radio Engineering
5.	Code and title of the	Designing devices on microcontrollers and FPGAs. Modeling of
	discipline	digital signals by means of MATLAB and VHDL
6.	Number of ECTS credits	2
7.	The structure of the course (distribution by type and hours of training)	2 ECTS credits: 6 h. – 3 lecture, 18 h. – 9 laboratory works, 4 h. – 2 consultations, 32 h. – independent work, type of control: exam.
8.	Schedule (terms) of study of the subject	2 Course, 4 semester of study (1Course, 2 semester of study, for a shortened form of study)
9.	Prerequisites for learning the discipline	Disciplines that must be studied before: Higher Mathematics, Programming, Basics of Circuitry
10.	Abstract (content) of the	Mandatory discipline of basic (professional) training, contains the following
	discipline	content modules:
		Mathematical bases of digital processing
		Analysis of digital filters
		Synthesis of digital filters
11.	Competencies, knowledge,	- ability to perform computer modeling of devices, systems and
	skills, understanding that a higher education acquirer	processes using universal application packages;
	has in the learning process	- ability to use systems of modeling and automation of circuit design for
	has in the rearining process	development of elements, nodes, parts and blocks of radio engineering and telecommunication systems;
		- ability to apply knowledge in the field of informatics and modern
		information technologies, computer and microprocessor technology and
		programming, software for solving specialized and practical problems in the field of professional activity.
12.	Learning outcomes of a	- calculate the spectral, temporal and correlation characteristics of discrete
	Higher Education applicant	signals, find their Z - image;
	C 11	- determine the system function of digital filters (DF);
		- calculate the time and frequency characteristics of the CF;
		- to build structural schemes of CF in direct, canonical, cascade and parallel
		forms;
		- synthesize filters with infinite and finite pulse characteristics (HIX and CIX filters);
13.	Assessment system in	To obtain a positive assessment with PPMP. Modeling of digital signals
	accordance with each task	using Matlab and VHDL students must know the types and models of
	for taking tests/exams	discrete signals, their time, spectral and correlation characteristics, methods
		of direct and inverse Z-conversion, the characteristics of digital filters;
		methods of analysis and synthesis of digital filters; examples of application
		of digital filters. Students must complete and defend laboratory work
		Students must complete and defend laboratory work. The credit is assessed by a rating, which is defined as the number of points
		obtained by the student during the semester on a 100-point scale.

14	The quality of the	Adherence to the principles of academic integrity (http://lib.nure.ua/plagiat).
11.	educational process	Update of the work program of the discipline - 2020. The laboratory
	educational process	workshop uses modern software MatLab.
15	Methodological support	Complex of educational and methodical support of educational
15.	Wethodological support	discipline
		•
		«Designing devices on microcontrollers and FPGAs. Modeling of digital
		signals by means of MATLAB and VHDL. Microcontrollers. FPGA» for
		students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 –
		«Automation and computer-integrated technologies», 152 – «Metrology and
		Information-Measuring Technique», 163 – «Biomedical Engineering», 171 –
		«Electronics», 172 – «Telecommunications and radio engineering», 173 –
		«Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul,
		L. Saikivska, O. Zubkov. – Kharkiv, 2020. – 380 p.
		http://catalogue.nure.ua/knmz.
		2. Methodical instructions to laboratory works on discipline
		«Designing devices on microcontrollers and FPGAs. Modeling of digital
		signals by means of MATLAB and VHDL» for students of all forms of
		specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and
		computer-integrated technologies», 152 - «Metrology and Information-
		Measuring Technique», 163 – «Biomedical Engineering», 171 –
		«Electronics», 172 – «Telecommunications and radio engineering», 173 –
		«Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul,
		L. Saikivska, O. Zubkov. – Kharkiv,: NURE, 2019. – 75 c. – pdf 1,71 Mb.
16.	The developer of the	Svyd Iryna, Head of Department of MTS, Candidate of Technical Sciences,
	Syllabus	Associate Professor
		iryna.svyd@nure.ua
		Obod Ivan, Professor the Department of Microprocessor Technologies and
		Systems, Doctor of Technical Sciences, Professor
		ivan.obod@nure.ua
		Vorgul Oleksander, Assosiate Professor of the Department of MTS,
		Candidate of Technical Sciences, Associate Professor
		oleksandr.vorgul@nure.ua Zubkov Oleh, Assosiate Professor of the Department of MTS, Candidate of
		Technical Sciences, Associate Professor
		oleh.zubkov@nure.ua
		Saikivska Liliia, Assosiate Professor of the Department of MTS, Candidate
		of Technical Sciences, Associate Professor
		lilia.saikivska@nure.ua
L		

Note.

The Syllabus is a document explaining the mutual responsibility of the teacher and the student. It presents procedures (including deadlines and evaluation principles), policies (including academic integrity policies) and the content of the discipline, as well as a calendar for its implementation. The measured goals that the teacher sets before his discipline should be stated in the Syllabus. The student must understand what he/she will be able to learn, what this course may be useful for. The Syllabus outlines the conceptual transition from "knowledge acquisition" and "practical skills" to competencies that a student can learn while studying this course. The Syllabus includes the course summary, purpose (competences), list of themes, reading materials, rules for passing missed classes. Unlike the work program and the educational and methodological complex of the discipline, The Syllabus is created for the student.