Syllabus Form of Academic Discipline

No	Field name	Detailed content, comments
1.	Name of the faculty	Faculty of Information Radio Technologies and Technical
-		Information Security
2.	The level of higher education	Bachelor's
3.	Code and title of specialty	171 – Electronics
4.	The type and title of the	Educational Program Systems, Technologies and Computer
	educational program	Means of Multimedia
5.	Code and title of the	Designing devices on microcontrollers and FPGAs. FPGA
٥.	discipline	Designing de vices on interecondences und 11 er ioi 11 er i
6.	Number of ECTS credits	4
7.	The structure of the course	4 ECTS credits: 12 h. – 6 lecture, 36 h. – 9 laboratory works, 8
, ,	(distribution by type and	h. – 4 consultations, 64 h. – independent work, type of control:
	hours of training)	exam.
8.	Schedule (terms) of study of	3 Course, 6 semester of study
	the subject	(2 Course, 4 semester of study for a shortened form of study)
9.	Prerequisites for learning the	Disciplines that must be studied before: Higher Mathematics,
	discipline	Programming,
	1	Basics of Circuitry, Designing devices on microcontrollers and
		FPGAs. Modeling of digital signals by means of MATLAB and
		VHDL, Designing devices on microcontrollers and FPGAs.
		Microcontrollers
10.	Abstract (content) of the	Mandatory discipline of basic (professional) training, contains
	discipline	the following content modules:
	•	Basics of VHDL language.
		Description of digital system in VHDL language.
		Description of devices in VHDL language.
		Programming of modern FPGA Artix 7 manufactured by Xilinx
		in VHDL language.
		Study of methods and means of debugging and simulation of
		projects using Xilinx Vivado CAD.
11.	Competencies, knowledge,	- ability to develop application software for microcontrollers;
	skills, understanding that a	- ability to design real-time systems and means of collecting
	higher education acquirer has	and processing information by using embedded system
	in the learning process	software for microcontrollers.
12.	e	- to solve at the hardware and software level the task of
	Higher Education applicant	building specialized hardware;
		- create models of digital systems at different levels of
		description: abstract, schematic and software;
		- to master the methods of decomposition of the system, which
		are implemented in hardware and software;
		- implement a description of logic (program) of medium
		complexity in VHDL;
		- to develop embedded microprocessor systems based on
12	A 222222224 2224 222 322	FPGA.
13.	Assessment system in	To get a positive grade in the discipline PPMP.PLIS
	accordance with each task	students must know the basics of programming systems for
	for taking tests/exams	digital systems in HDL, the basics of synthesis and analysis of
		logic circuits, FPGA circuitry Artix-7, be able to write

14.	The quality of the educational process	programs of medium complexity in VHDL, know methods and tools for debugging Vivado CAD software. Students must complete and defend laboratory work. The credit is assessed by a rating, which is defined as the number of points obtained by the student during the semester on a 100-point scale. Adherence to the principles of academic integrity (http://lib.nure.ua/plagiat). Update of the work program of the discipline - 2020. The laboratory workshop is equipped with
		modern laboratory layouts Nexys 4 DDR Artix-7 FPGA Trainer Board and uses modern software: MatLab, Vivado Design Suite from Xilinx.
15.	Methodological support	Complex of educational and methodical support of educational discipline «Designing devices on microcontrollers and FPGAs. Modeling of digital signals by means of MATLAB and VHDL. Microcontrollers. FPGA» for students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and computer-integrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv, 2020. – 380 p. http://catalogue.nure.ua/knmz. 2. Methodical instructions to laboratory works on discipline «Designing devices on microcontrollers and FPGAs.FPGA» for students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and computerintegrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv: NURE, 2020. – 95 c. – pdf 2,1 Mb.
16.	The developer of the Syllabus	Svyd Iryna, Head of Department of MTS, Candidate of Technical Sciences, Associate Professor iryna.svyd@nure.ua Obod Ivan, Professor the Department of Microprocessor Technologies and Systems, Doctor of Technical Sciences, Professor ivan.obod@nure.ua Vorgul Oleksander, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleksandr.vorgul@nure.ua Zubkov Oleh, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleh.zubkov@nure.ua Saikivska Liliia, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleh.zubkov@nure.ua Saikivska Liliia, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor liliia.saikivska@nure.ua