Syllabus Form of Academic Discipline

N₂	Field name	Detailed content, comments
1.	Name of the faculty	Post-Graduate Studies Department
2.	The level of higher education	Ph.D
3.	Code and title of specialty	172 – Telecommunications and Radio Engineering
4.	The type and title of the	Educational Program of Telecommunications and Radio
	educational program	Engineering
5.	Code and title of the	Methods of increasing the noise immunity of airspace
	discipline	surveillance systems
6.	Number of ECTS credits	8
7.	The structure of the course	8 ECTS credits: $60 \text{ h} - 30$ lecture, $40 \text{ h} - 20$ practice works, 14
	(distribution by type and	h. – 7 consultations, 126 h. – independent work, type of control:
0	nours of training)	
8.	of the subject	1 Course, 1 and 2 semesters of study
9.	Prerequisites for learning	Study of disciplines in the field 17 "Electronics and
	the discipline	telecommunications"
10.	Abstract (content) of the	Elective academic discipline of professional and practical
	discipline	training, contains the following content modules:
		The place and role of interrogative airspace surveillance systems
		in the information support of users. Signals of interrogatory
		airspace surveillance systems and their processing. Theory of
		detection and coordinate measurement of air objects by
		observation surveillance systems.
		Interference protection of interrogative airspace surveillance
		systems. Ways and methods to increase the noise immunity of
		interrogative airspace surveillance systems.
11.	Competencies, knowledge,	- ability to develop mathematical models, developments and
	skills, understanding that a	methods of analysis of scientific, technical, economic and social
	higher education acquirer	systems;
	has in the learning process	- ability to develop equipment, technologies and implement
		modeling methods and algorithms for studying the characteristics
		and behavior of infocommunication and telecommunication
		systems and radio engineering;
		- ability to conduct experiments on laboratory equipment,
		according to the modeling program with processing and analysis
		of results;
		- ability to analyze the results of problem solving and formulate
		conclusions for complex problems in various fields of science
		and technology;
		- ability to teach within the specialty 172 "Telecommunications
		and Radio Engineering"
12.	Learning outcomes of a	- know mathematical models of problems for analysis of signals,
	Higher Education applicant	images and texts, information retrieval and extraction of
		knowledge, information protection, etc.;
		- be able to develop new and improve existing computational

		algorithms and software for mathematical modeling of physical
		and mechanical fields;
		- be able to choose the appropriate (the best by a chosen
		criterion) method of solving the problem.
13.	Assessment system in	To obtain a positive assessment of the graduate student must
	accordance with each task	master the following thematic sections: classification of airspace
	for taking tests/exams	surveillance systems; structure and quality indicators of
		information support of consumers by airspace surveillance
		systems; general information and field of application of
		interrogation surveillance systems; signals of interrogative
		airspace surveillance systems; detection of signals in
		interrogation surveillance systems; noise immunity for signals of
		interrogation surveillance systems; signal processing in
		interrogation monitoring systems; general approaches to
		detection and measurement of coordinates of air objects;
		mathematical models of signals and interferences in interrogation
		monitoring systems; optimization of signal detection in
		interrogation monitoring systems; assessment of noise minumity
		of interformed immunity of interrogation surveillance systems in
		the transmission of flight information: assessment of noise
		immunity of information codes used for the transmission of flight
		information in interrogation surveillance systems: increasing the
		energy concealment of the respondents of interrogation
		surveillance systems; methods of protection of interrogative
		surveillance systems from internal system interference
		The credit is assessed by a rating which is defined as the
		number of points obtained by the graduate student during the
		semester on a 100-point scale.
14.	The quality of the	Adherence to the principles of academic integrity
	educational process	(http://lib.nure.ua/plagiat). Update of the work program of the
	r	discipline - 2020. The laboratory workshop uses modern
		software MatLab, Octava, Mathcad.
15.	Methodological support	Complex of educational and methodical support of
	0 11	educational discipline «Methods for improving noise immunity
		of airspace surveillance systems» for students of all forms of
		specialties 172 – «Telecommunications and radio engineering» /
		[Electronic resource] Authors.: I. Svyd, I. Obod Kharkiv,
		2020. – 362 p. http://catalogue.nure.ua/knmz.
16.	The developer of the	Svyd Iryna, Head of Department of MTS, Candidate of
	Syllabus	Technical Sciences, Associate Professor
		iryna.svyd@nure.ua
		Obod Ivan, Professor the Department of Microprocessor
		Technologies and Systems, Doctor of Technical Sciences,
		Professor
		ivan obod@nure ua