Syllabus Form of Academic Discipline

№	Field name	Detailed content, comments
1.	Name of the faculty	Faculty of Infocommunications
2.	The level of higher	Bachelor's
	education	
3.	Code and title of specialty	172 – Telecommunications and Radio Engineering
4.	The type and title of the	Educational Program of Telecommunications
	educational program	
5.	Code and title of the	Designing devices on microcontrollers and FPGAs. FPGA
	discipline	
6.	Number of ECTS credits	4
7.	The structure of the course	4 ECTS credits: 12 h. – 6 lecture, 36 h. – 9 laboratory works,
	(distribution by type and	8 h. – 4 consultations, 64 h. – independent work, type of control:
	hours of training)	exam.
8.	Schedule (terms) of study	3 Course, 6 semester of study
	of the subject	(2 Course, 4 semester of study for a shortened form of study)
9.	Prerequisites for learning	Disciplines that must be studied before: Higher Mathematics,
	the discipline	Programming,
		Basics of Circuitry, Designing devices on microcontrollers and
		FPGAs. Modeling of digital signals by means of MATLAB and
		VHDL, Designing devices on microcontrollers and FPGAs. Microcontrollers
10.	Abstract (content) of the	
10.	Abstract (content) of the discipline	Mandatory discipline of basic (professional) training, contains the following content modules:
	discipline	Basics of VHDL language.
		Description of digital system in VHDL language.
		Description of devices in VHDL language.
		Programming of modern FPGA Artix 7 manufactured by Xilinx
		in VHDL language.
		Study of methods and means of debugging and simulation of
		projects using Xilinx Vivado CAD.
11.	Competencies, knowledge,	- ability to perform computer modeling of devices, systems and
	skills, understanding that a	processes using universal application packages;
	higher education acquirer	- ability to use systems of modeling and automation of circuit
	has in the learning process	design for development of elements, nodes, parts and blocks of
		radio engineering and telecommunication systems;
		- ability to apply knowledge in the field of informatics and
		modern information technologies, computer and microprocessor
		technology and programming, software for solving specialized
		and practical problems in the field of professional activity.
12.	Learning outcomes of a	- to solve at the hardware and software level the task of building
	Higher Education applicant	specialized hardware;
		- create models of digital systems at different levels of
		description: abstract, schematic and software;
		- to master the methods of decomposition of the system, which
		are implemented in hardware and software;
		- implement a description of logic (program) of medium
		complexity in VHDL;
12	Assassment system in	- to develop embedded microprocessor systems based on FPGA. To get a positive grade in the discipline PPMP.PLIS students
13.	Assessment system in accordance with each task	
	accordance with each task	must know the basics of programming systems for digital

	for taking tests/exams	systems in HDL, the basics of synthesis and analysis of logic
		circuits, FPGA circuitry Artix-7, be able to write programs of
		medium complexity in VHDL, know methods and tools for
		debugging Vivado CAD software.
		Students must complete and defend laboratory work.
		The credit is assessed by a rating, which is defined as the
		number of points obtained by the student during the semester on
		a 100-point scale.
14.	The quality of the	Adherence to the principles of academic integrity
	educational process	(http://lib.nure.ua/plagiat). Update of the work program of the
		discipline - 2020. The laboratory workshop is equipped with
		modern laboratory layouts Nexys 4 DDR Artix-7 FPGA Trainer
		Board and uses modern software: MatLab, Vivado Design Suite
		from Xilinx.
15.	Methodological support	1. Complex of educational and methodical support of
		educational discipline «Designing devices on microcontrollers
		and FPGAs. Modeling of digital signals by means of MATLAB
		and VHDL. Microcontrollers. FPGA» for students of all forms of
		specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation
		and computer-integrated technologies», 152 – «Metrology and
		Information-Measuring Technique», 163 – «Biomedical
		Engineering», 171 – «Electronics», 172 – «Telecommunications
		and radio engineering», 173 – «Avionics» / [Electronic resource]
		Authors.: I. Svyd, I. Obod, O. Vorgul, L. Saikivska, O. Zubkov. –
		Kharkiv, 2020. – 380 p. http://catalogue.nure.ua/knmz.
		2. Methodical instructions to laboratory works on discipline
		«Designing devices on microcontrollers and FPGAs.FPGA» for
		students of all forms of specialties: 125 – «Cybersecurity»
		(STPI), 151 – «Automation and computer-integrated
		technologies», 152 – «Metrology and Information-Measuring
		Technique», 163 – «Biomedical Engineering», 171 –
		«Electronics», 172 – «Telecommunications and radio
		engineering», 173 – «Avionics» / [Electronic resource] Authors.:
		I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv:
		NURE, 2020. – 95 c. – pdf 2,1 Mb.
16.	The developer of the	Svyd Iryna, Head of Department of MTS, Candidate of
	Syllabus	Technical Sciences, Associate Professor
		iryna.svyd@nure.ua
		Obod Ivan, Professor the Department of Microprocessor
		Technologies and Systems, Doctor of Technical Sciences,
		Professor
		ivan.obod@nure.ua
		Vorgul Oleksander, Assosiate Professor of the Department
		of MTS, Candidate of Technical Sciences, Associate Professor
		oleksandr.vorgul@nure.ua
		Zubkov Oleh, Assosiate Professor of the Department of MTS,
		Candidate of Technical Sciences, Associate Professor
		oleh.zubkov@nure.ua
		Saikivska Liliia, Assosiate Professor of the Department of MTS,
		Candidate of Technical Sciences, Associate Professor
		liliia.saikivska@nure.ua