Syllabus Form of Academic Discipline

N₂	Field name	Detailed content, comments
1.	Name of the faculty	Faculty of Automatics and Computerized Technologies
2.	The level of higher education	Bachelor's
3.	Code and title of specialty	172 – Telecommunications and Radio Engineering
4.	The type and title of the	Educational Program Intelligent Technologies of Radio
	educational program	Electronics
5.	Code and title of the discipline	Designing devices on microcontrollers and
	1	FPGAs. Microcontrollers
6.	Number of ECTS credits	4
7.	The structure of the course	4 ECTS credits: 12 h. – 6 lecture, 36 h. – 9 laboratory works,
	(distribution by type and hours	8 h. – 4 consultations, 64 h. – independent work, type of
	of training)	control: exam.
8.	Schedule (terms) of study of	3 Course, 5 semester of study
	the subject	(2 Course, 3 semester of study for a shortened form of study)
9.	Prerequisites for learning the	Disciplines that must be studied before: Higher Mathematics,
	discipline	Programming,
		Basics of Circuitry, Designing devices on microcontrollers
		and FPGAs. Modeling of digital signals by means of
10		MATLAB and VHDL
10.	Abstract (content) of the	Mandatory discipline of basic (professional) training, contains
	discipline	the following content modules:
		Modern STM32 microcontrollers and basics of C language.
		ARM programming of STM32 processors.
11.	Competencies, knowledge,	Built-in and external peripheral programming.be able to use modern computer simulation tools for the
11.	skills, understanding that a	study of radio electronics;
	higher education acquirer has	- be able to apply computer-aided design systems for the
	in the learning process	development of electronic devices;
		- be able to utilize modern programming languages for the
		implementation of control algorithms for intelligent means of
		radio electronics.
12.	Learning outcomes of a	- develop schematics and write software for such devices as:
	Higher Education applicant	keyboard controller, PWM and analog signal generator,
		analog date meter
		digital signal filtering device, UART communication device,
		graphic display control device, etc .;
		- debug software using simulation packages STM32CubeMX
		and IAR Embedded Workbench for ARM;
10		- program the microprocessor.
13.	•	To get a positive grade from PPMP. Microcontrollers,
	accordance with each task for	students must master three main sections of this course:
	taking tests/exams	modern STM32 microcontrollers and the basics of the C language APM programming of STM32 programming
		language, ARM programming of STM32 processors,
		programming of embedded and external peripherals.
		Students must complete and defend laboratory work. The credit is assessed by a rating, which is defined as
		the number of points obtained by the student during the
		semester on a 100-point scale.
		semester on a roo-point searc.

14.	The quality of the educational process	Adherence to the principles of academic integrity (http://lib.nure.ua/plagiat). Update of the work program of the discipline - 2020. The laboratory workshop is equipped with modern laboratory layouts STM32F4 DISCOVERY and uses modern software: MatLab, STM32CubeMX, IAR Embedded Workbench for ARM v 8.3 Kikxart X.
15.	Methodological support	Complex of educational and methodical support of educational discipline «Designing devices on microcontrollers and FPGAs. Modeling of digital signals by means of MATLAB and VHDL. Microcontrollers. FPGA» for students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and computer-integrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv, 2020. – 380 p. http://catalogue.nure.ua/knmz. 2. Methodical instructions to laboratory works on discipline «Designing devices on microcontrollers and FPGAs. Microcontrollers» for students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and computer-integrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv, 102 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv,: NURE, 2020. – 88 c. – pdf 2,4 Mb.
16.	The developer of the Syllabus	Svyd Iryna, Head of Department of MTS, Candidate of Technical Sciences, Associate Professor iryna.svyd@nure.ua Obod Ivan, Professor the Department of Microprocessor Technologies and Systems, Doctor of Technical Sciences, Professor ivan.obod@nure.ua Vorgul Oleksander, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleksandr.vorgul@nure.ua Zubkov Oleh, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleh.zubkov@nure.ua Saikivska Liliia, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor