Syllabus Form of Academic Discipline

No	Field name	Detailed content, comments
1.	Name of the faculty	Faculty of Automatics and Computerized Technologies
2.	The level of higher education	Bachelor's
3.	Code and title of specialty	151 – Automation and Computer-Integrated Technologies
4.	The type and title of the educational program	Educational Program System Engineering
5.	Code and title of the	Designing devices on microcontrollers and
	discipline	FPGAs. Microcontrollers
6.	Number of ECTS credits	4
7.	The structure of the course	4 ECTS credits: 12 h. – 6 lecture, 36 h. – 9 laboratory works, 8
	(distribution by type and	h. – 4 consultations, 64 h. – independent work, type of control:
	hours of training)	exam.
8.	Schedule (terms) of study of	3 Course, 5 semester of study
	the subject	(2 Course, 3 semester of study for a shortened form of study)
9.	Prerequisites for learning the	Disciplines that must be studied before: Higher Mathematics,
	discipline	Programming, Electrical Engineering and Electrical Mechanics,
		Designing Devices on Microcontrollers and FPGAs. Modeling
10	Abstract (assistant) Cd	of Digital Signals by Means of MATLAB and VHDL
10.	` ,	Mandatory discipline of basic (professional) training, contains
	discipline	the following content modules: Modern STM22 microcontrollers and basics of Clanguage
		Modern STM32 microcontrollers and basics of C language. ARM programming of STM32 processors.
		Built-in and external peripheral programming.
11.	Competencies, knowledge,	- be able to justify the choice of technical structure and to
11.	skills, understanding that a	develop the application software for microprocessor control
	higher education acquirer has	systems based on local automation tools, industrial logic
	in the learning process	controllers and programmable logic arrays and signal
	in the learning process	processors;
		- be able to utilize the software specialized to solve typical
		engineering problems in the field of automation and
		instrumentation.
12.	Learning outcomes of a	- develop schematics and write software for such devices as:
	Higher Education applicant	keyboard controller, PWM and analog signal generator, analog
		date meter
		digital signal filtering device, UART communication device,
		graphic display control device, etc .;
		- debug software using simulation packages STM32CubeMX
		and IAR Embedded Workbench for ARM;
1.0		- program the microprocessor.
13.		To get a positive grade from PPMP. Microcontrollers,
	accordance with each task	students must master three main sections of this course: modern
	for taking tests/exams	STM32 microcontrollers and the basics of the C language,
		ARM programming of STM32 processors, programming of
		embedded and external peripherals.
		Students must complete and defend laboratory work.
		The credit is assessed by a rating, which is defined as the number of points obtained by the student during the semester
		on a 100-point scale.
		vii a 100-poiiit scaic.

14.	The quality of the educational process	Adherence to the principles of academic integrity (http://lib.nure.ua/plagiat). Update of the work program of the discipline - 2020. The laboratory workshop is equipped with modern laboratory layouts STM32F4 DISCOVERY and uses modern software: MatLab, STM32CubeMX, IAR Embedded Workbangh for APM v. 8.3 Kilkvert V.
15.	Methodological support	Workbench for ARM v 8.3 Kikxart X. Complex of educational and methodical support of educational discipline «Designing devices on microcontrollers and FPGAs. Modeling of digital signals by means of MATLAB and VHDL. Microcontrollers. FPGA» for students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and computer-integrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv, 2020. – 380 p. http://catalogue.nure.ua/knmz. 2. Methodical instructions to laboratory works on discipline «Designing devices on microcontrollers and FPGAs. Microcontrollers» for students of all forms of specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation and computerintegrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio engineering», 173 – «Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov.
16.	The developer of the Syllabus	- Kharkiv,: NURE, 2020. – 88 c. – pdf 2,4 Mb. Svyd Iryna, Head of Department of MTS, Candidate of Technical Sciences, Associate Professor iryna.svyd@nure.ua Obod Ivan, Professor the Department of Microprocessor Technologies and Systems, Doctor of Technical Sciences, Professor ivan.obod@nure.ua Vorgul Oleksander, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleksandr.vorgul@nure.ua Zubkov Oleh, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleh.zubkov@nure.ua Saikivska Liliia, Assosiate Professor of the Department of MTS, Candidate of Technical Sciences, Associate Professor oleh.zubkov@nure.ua