Syllabus Form of Academic Discipline

N⁰	Field name	Detailed content, comments
1.	Name of the faculty	Faculty of Information Radio Technologies and Technical
	-	Information Security
2.	The level of higher education	Bachelor's
3.	Code and title of specialty	125 – Cybersecurity
4.	The type and title of the	Educational Program Systems of Technical Protection of
	educational program	Information
5.	Code and title of the	Designing devices on microcontrollers and FPGAs. FPGA
	discipline	
6.	Number of ECTS credits	4
7.	The structure of the course	4 ECTS credits: 12 h. – 6 lecture, 36 h. – 9 laboratory works, 8
	(distribution by type and	h. – 4 consultations, 64 h. – independent work, type of control:
	hours of training)	exam.
8.	Schedule (terms) of study of	3 Course, 6 semester of study
	the subject	(2 Course, 4 semester of study for a shortened form of study)
9.	Prerequisites for learning the	Disciplines that must be studied before: Higher Mathematics,
	discipline	Programming, Fundamentals of the Circuit Theory, Designing
		devices on microcontrollers and FPGAs. Modeling of Digital
		Signals by Means of MATLAB and VHDL, Designing Devices
		on Microcontrollers and FPGAs. Microcontrollers
10.	Abstract (content) of the	Mandatory discipline of basic (professional) training, contains
	discipline	the following content modules:
		Basics of VHDL language.
		Description of digital system in VHDL language.
		Description of devices in VHDL language.
		Programming of modern FPGA Artix 7 manufactured by Xilinx
		in VHDL language.
		Study of methods and means of debugging and simulation of
11	Competencies, knowledge,	projects using Xilinx Vivado CAD. - ability to use software, hardware and software-hardware
11.	skills, understanding that a	complexes of information protection means on objects of
	higher education acquirer has	information activity;
	in the learning process	mormation activity,
12.	Learning outcomes of a	- to solve at the hardware and software level the task of
12.	Higher Education applicant	building specialized hardware;
	Inghei Zuseanon appreant	- create models of digital systems at different levels of
		description: abstract, schematic and software;
		- to master the methods of decomposition of the system, which
		are implemented in hardware and software;
		- implement a description of logic (program) of medium
		complexity in VHDL;
		- to develop embedded microprocessor systems based on
		FPGA.
13.	Assessment system in	To get a positive grade in the discipline PPMP.PLIS
	accordance with each task	students must know the basics of programming systems for
	for taking tests/exams	digital systems in HDL, the basics of synthesis and analysis of
		logic circuits, FPGA circuitry Artix-7, be able to write
		programs of medium complexity in VHDL, know methods and
		tools for debugging Vivado CAD software.

		Students must complete and defend laboratory work. The credit is assessed by a rating, which is defined as the
		number of points obtained by the student during the semester
14	The quality of the	on a 100-point scale.
14.	The quality of the educational process	Adherence to the principles of academic integrity (http://lib.nure.ua/plagiat). Update of the work program of the
	educational process	discipline - 2020. The laboratory workshop is equipped with
		modern laboratory layouts Nexys 4 DDR Artix-7 FPGA Trainer
		Board and uses modern software: MatLab, Vivado Design Suite
		from Xilinx.
15.	Methodological support	Complex of educational and methodical support of
		educational discipline
		«Designing devices on microcontrollers and FPGAs. Modeling
		of digital signals by means of MATLAB and VHDL.
		Microcontrollers. FPGA» for students of all forms of
		specialties: 125 – «Cybersecurity» (STPI), 151 – «Automation
		and computer-integrated technologies», 152 – «Metrology and Information-Measuring Technique», 163 – «Biomedical
		Engineering», 171 – «Electronics», 172 –
		«Telecommunications and radio engineering», 173 –
		«Avionics» / [Electronic resource] Authors.: I. Svyd, I. Obod,
		O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv, 2020. – 380 p.
		http://catalogue.nure.ua/knmz.
		2. Methodical instructions to laboratory works on
		discipline «Designing devices on microcontrollers and
		FPGAs.FPGA» for students of all forms of specialties: 125 –
		«Cybersecurity» (STPI), 151 – «Automation and computer-
		integrated technologies», 152 – «Metrology and Information-
		Measuring Technique», 163 – «Biomedical Engineering», 171 – «Electronics», 172 – «Telecommunications and radio
		engineering», 173 – «Avionics» / [Electronic resource]
		Authors.: I. Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov.
		– Kharkiv: NURE, 2020. – 95 c. – pdf 2,1 Mb.
16.	The developer of the	Svyd Iryna, Head of Department of MTS, Candidate of
	Syllabus	Technical Sciences, Associate Professor
		iryna.svyd@nure.ua
		Obod Ivan, Professor the Department of Microprocessor
		Technologies and Systems, Doctor of Technical Sciences,
1		Professor ivan.obod@nure.ua
1		Vorgul Oleksander, Assosiate Professor of the Department
		of MTS, Candidate of Technical Sciences, Associate Professor
		oleksandr.vorgul@nure.ua
		Zubkov Oleh, Assosiate Professor of the Department of MTS,
1		Candidate of Technical Sciences, Associate Professor
1		oleh.zubkov@nure.ua
		Saikivska Liliia, Assosiate Professor of the Department
		of MTS, Candidate of Technical Sciences, Associate Professor
		liliia.saikivska@nure.ua