Syllabus Form of Academic Discipline

№	Field name	Detailed content, comments
1.	Name of the faculty	Faculty of Information Radio Technologies and Technical
	-	Information Security
2.	The level of higher	Bachelor's
	education	
3.	Code and title of specialty	125 – Cybersecurity
4.	The type and title of the	Educational Program Systems of Technical Protection of
	educational program	Information
5.	Code and title of the	Designing devices on microcontrollers and FPGAs.
	discipline	Microcontrollers
6.	Number of ECTS credits	4
7.	The structure of the	4 ECTS credits: 12 h. – 6 lecture, 36 h. – 9 laboratory works, 8 h.
	course (distribution by	- 4 consultations, 64 h. – independent work, type of control: exam.
	type and hours of training)	
8.	Schedule (terms) of study	3 Course, 5 semester of study
	of the subject	(2 Course, 3 semester of study for a shortened form of study)
9.	Prerequisites for learning	Disciplines that must be studied before: Higher Mathematics,
	the discipline	Programming, Fundamentals of the Circuit Theory, Designing
		Devices on Microcontrollers and FPGAs. Modeling of Digital
		Signals by Means of MATLAB and VHDL
10.	Abstract (content) of the	Mandatory discipline of basic (professional) training, contains the
	discipline	following content modules:
		Modern STM32 microcontrollers and basics of C language.
		ARM programming of STM32 processors.
1.1		Built-in and external peripheral programming.
11.	Competencies,	- ability to use software, hardware and software-hardware
	knowledge, skills,	complexes of information protection means on objects of
	understanding that a	information activity;
	higher education acquirer	
12	has in the learning process	dayalan sahamatias and write saftware for such dayions as
12.	Learning outcomes of a	- develop schematics and write software for such devices as:
	Higher Education	keyboard controller, PWM and analog signal generator, analog date meter
	applicant	digital signal filtering device, UART communication device,
		graphic display control device, etc.;
		- debug software using simulation packages STM32CubeMX and
		IAR Embedded Workbench for ARM;
		- program the microprocessor.
13.	Assessment system in	To get a positive grade from PPMP. Microcontrollers,
	accordance with each task	students must master three main sections of this course: modern
	for taking tests/exams	STM32 microcontrollers and the basics of the C language, ARM
	J	programming of STM32 processors, programming of embedded
		and external peripherals.
		Students must complete and defend laboratory work.
		The credit is assessed by a rating, which is defined as the
		number of points obtained by the student during the semester on a
		100-point scale.
14.	The quality of the	Adherence to the principles of academic integrity
	educational process	(http://lib.nure.ua/plagiat). Update of the work program of the

		11 11 2020 TH 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		discipline - 2020. The laboratory workshop is equipped with
		modern laboratory layouts STM32F4 DISCOVERY and uses
		modern software: MatLab, STM32CubeMX, IAR Embedded
		Workbench for ARM v 8.3 Kikxart X.
15.	Methodological support	Complex of educational and methodical support of
		educational discipline
		«Designing devices on microcontrollers and FPGAs. Modeling of
		digital signals by means of MATLAB and VHDL.
		Microcontrollers. FPGA» for students of all forms of specialties:
		125 – «Cybersecurity» (STPI), 151 – «Automation and computer-
		integrated technologies», 152 – «Metrology and Information-
		Measuring Technique», 163 – «Biomedical Engineering», 171 –
		«Electronics», 172 – «Telecommunications and radio
		engineering», 173 – «Avionics» / [Electronic resource] Authors.: I.
		Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv,
		2020. – 380 p. http://catalogue.nure.ua/knmz.
		2. Methodical instructions to laboratory works on discipline
		«Designing devices on microcontrollers and FPGAs.
		Microcontrollers» for students of all forms of specialties: 125 –
		«Cybersecurity» (STPI), 151 – «Automation and computer-
		integrated technologies», 152 – «Metrology and Information-
		Measuring Technique», 163 – «Biomedical Engineering», 171 –
		«Electronics», 172 – «Telecommunications and radio
		engineering», 173 – «Avionics» / [Electronic resource] Authors.: I.
		Svyd, I. Obod, O.Vorgul, L. Saikivska, O. Zubkov Kharkiv,:
		NURE, 2020. – 88 c. – pdf 2,4 Mb.
16.	The developer of the	Svyd Iryna, Head of Department of MTS, Candidate of Technical
	Syllabus	Sciences, Associate Professor
		iryna.svyd@nure.ua
		Obod Ivan, Professor the Department of Microprocessor
		Technologies and Systems, Doctor of Technical Sciences,
		Professor
		ivan.obod@nure.ua
		Vorgul Oleksander, Assosiate Professor of the Department
		of MTS, Candidate of Technical Sciences, Associate Professor
		oleksandr.vorgul@nure.ua
		Zubkov Oleh, Assosiate Professor of the Department of MTS,
		Candidate of Technical Sciences, Associate Professor
		oleh.zubkov@nure.ua
		Saikivska Liliia, Assosiate Professor of the Department of MTS,
		Candidate of Technical Sciences, Associate Professor
		liliia.saikivska@nure.ua
L		mma.sarkivska@muic.ua