Syllabus Form of Academic Discipline

№	Field name	Detailed content, comments
1.	Name of the faculty	Faculty of Automatics and Computerized Technologies
2.	The level of higher education	Bachelor's
3.	Code and title of specialty	173 – Avionics
4.	The type and title of the	Educational Program of Embedded System in Avionics
7.	educational program	
5.	Code and title of the	Designing devices on microcontrollers and FPGAs.
	discipline	Modeling of digital signals by means of MATLAB and
		VHDL
6.	Number of ECTS credits	2
7.	The structure of the course	2 ECTS credits: 6 h. – 3 lecture, 18 h. – 9 laboratory
	(distribution by type and	works, 4 h. – 2 consultations, 32 h. – independent work,
	hours of training)	type of control: exam.
8.	Schedule (terms) of study of	2 Course, 4 semester of study (1Course, 2 semester of
	the subject	study, for a shortened form of study)
9.	Prerequisites for learning the	Disciplines that must be studied before: Higher
	discipline	Mathematics, Programming,
		Fundamentals of Radio Electronics
10.	Abstract (content) of the	Mandatory discipline of basic (professional) training,
	discipline	contains the following content modules:
		Mathematical bases of digital processing
		Analysis of digital filters
		Synthesis of digital filters
11.	Competencies, knowledge,	- the ability to competently choose the elements of systems:
	skills, understanding that a	sensors, actuators, digital controllers and to create software;
	higher education acquirer has	- be able to justify the choice of technical structure and to
	in the learning process	develop the application software for microprocessor control
		systems based on local automation tools, industrial
		controllers, programmable logic matrices and FPGA.
12.	Learning outcomes of a	- calculate the spectral, temporal and correlation
	Higher Education applicant	characteristics of discrete signals, find their Z - image;
		- determine the system function of digital filters (DF);
		- calculate the time and frequency characteristics of the CF;
		- to build structural schemes of CF in direct, canonical,
		cascade and parallel forms;
		- synthesize filters with infinite and finite pulse
1.0		characteristics (HIX and CIX filters);
13.	Assessment system in	To obtain a positive assessment with PPMP. Modeling
	accordance with each task	of digital signals using Matlab and VHDL students must
	for taking tests/exams	know the types and models of discrete signals, their time,
		spectral and correlation characteristics, methods of direct
		and inverse Z-conversion, the characteristics of digital
		filters; methods of analysis and synthesis of digital filters;
		examples of application of digital filters.
		Students must complete and defend laboratory work.
		The credit is assessed by a rating, which is defined as the
		number of points obtained by the student during the
		semester on a 100-point scale.

14.	The quality of the	Adherence to the principles of academic integrity
14.	educational process	(http://lib.nure.ua/plagiat). Update of the work program of
	educational process	the discipline - 2020. The laboratory workshop uses
		modern software MatLab.
15.	Methodological support	Complex of educational and methodical support of
13.	Wethodological support	= -
		educational discipline
		«Designing devices on microcontrollers and FPGAs.
		Modeling of digital signals by means of MATLAB and
		VHDL. Microcontrollers. FPGA» for students of all forms
		of specialties: 125 – «Cybersecurity» (STPI), 151 –
		«Automation and computer-integrated technologies», 152 –
		«Metrology and Information-Measuring Technique», 163 –
		«Biomedical Engineering», 171 – «Electronics», 172 –
		«Telecommunications and radio engineering», 173 –
		«Avionics» / [Electronic resource] Authors.: I. Svyd, I.
		Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv,
		2020. – 380 p. http://catalogue.nure.ua/knmz.
		2. Methodical instructions to laboratory works on
		discipline «Designing devices on microcontrollers and
		FPGAs. Modeling of digital signals by means of MATLAB
		and VHDL» for students of all forms of specialties: 125 –
		«Cybersecurity» (STPI), 151 – «Automation and computer-
		integrated technologies», 152 – «Metrology and
		Information-Measuring Technique», 163 – «Biomedical
		Engineering», 171 – «Electronics», 172 –
		«Telecommunications and radio engineering», 173 –
		«Avionics» / [Electronic resource] Authors.: I. Svyd, I.
		Obod, O.Vorgul, L. Saikivska, O. Zubkov. – Kharkiv,:
		NURE, 2019. – 75 c. – pdf 1,71 Mb.
16.	The developer of the	Svyd Iryna, Head of Department of MTS, Candidate of
10.	Syllabus	Technical Sciences, Associate Professor
	Synabus	iryna.svyd@nure.ua
		Obod Ivan, Professor the Department of Microprocessor
		Technologies and Systems, Doctor of Technical Sciences,
		Professor
		ivan.obod@nure.ua
		Vorgul Oleksander, Assosiate Professor of the Department
		of MTS, Candidate of Technical Sciences, Associate
		Professor
		oleksandr.vorgul@nure.ua
		Zubkov Oleh, Assosiate Professor of the Department
		of MTS, Candidate of Technical Sciences, Associate
		Professor
		oleh.zubkov@nure.ua
		Saikivska Liliia, Assosiate Professor of the Department
		of MTS, Candidate of Technical Sciences, Associate
		Professor
		liliia.saikivska@nure.ua